检测到您的浏览器版本过低,可能导致某些功能无法正常使用,建议升级您的浏览器,或使用推荐浏览器 Google Chrome EdgeFirefox X

首页科技前沿与新兴产业新材料新材料

软材料切割的物理机制:多尺度实验与建模研究

供稿人:吴春莹供稿时间:2026-01-21 15:05:19关键词:软材料,切割,物理机制

软材料是一类在较小应力下即可发生显著变形的物质,其典型特征包括低弹性模量、高延展性以及复杂的耗散行为,常见于自然界与工程领域,如生物组织、水凝胶、弹性体、食品等。这些材料在受力时往往表现出超弹性、黏弹性或塑性与黏性耦合的响应,并且其破坏过程常涉及大变形下的渐进式失效而非脆性断裂。切割作为一种基本的物理过程,在软材料中却呈现出尤为复杂的力学行为:它不仅涉及材料的宏观变形与断裂,还深受工具-材料界面的黏附、摩擦、磨损以及材料内部能量耗散机制的影响。尽管软切割在众多应用中至关重要,传统基于线弹性断裂力学或库仑摩擦的理论难以完整描述其过程,尤其无法解释为何力学性能相似的材料会表现出截然不同的切割响应,以及压入阶段如何稳定或不稳定地过渡到切割。因此,建立一个能统一描述材料本构行为、界面相互作用与能量耗散机制的物理框架,成为该领域亟待解决的关键问题。

为深入揭示软材料切割的物理机制,德国埃尔兰根-纽伦堡弗里德里希-亚历山大大学应用力学研究所的Miguel Angel Moreno-MateosPaul Steinmann开展了一项结合实验与计算建模的系统研究。该工作获得了欧洲研究委员会“地平线欧洲”计划的资助,旨在通过设计新型切割实验并构建耦合内聚力与接触力学的三维计算模型,揭示不同软材料在刀具作用下的破坏机理,尤其聚焦于压入-切割转变的条件、切向阻力的来源以及材料内部结构对切割过程的影响。研究选取了三类代表性材料:物理交联的明胶水凝胶、Sylgard 184弹性体以及由肉糜和脂肪构成的加工食品材料。实验方面,通过定制切割装置获取力-位移曲线,并利用数字图像相关技术捕捉表面应变场演化;计算方面,则建立了一个可分离多种物理贡献的连续介质模型,该模型集成了超弹性本构、内聚力分离律、库仑摩擦以及反映黏附与磨损的界面切向力模型,并通过开源有限元平台FEniCSx实现数值模拟。

该研究主要围绕材料行为、破坏起始、界面力学与能量耗散展开。实验首先揭示了三种截然不同的切割响应:明胶水凝胶表现出明显的脆性转变特征,切割力在达到峰值后急剧下降,对应于内部物理交联网络的突然崩塌;弹性体则呈现平滑、近乎线性的力-位移曲线,反映其高韧性下渐进式的破坏方式;肉基食品材料则因内部异质结构(如脂肪颗粒)的阻尼作用,展现出无明显峰值、进入平台波动的切割力,表明其破坏主要通过延性撕裂与材料流动实现。这些行为差异无法仅用材料刚度或断裂韧性解释,而必须考虑界面与耗散机制的作用。

进一步借助计算模型对物理机制进行剥离分析,研究获得了以下核心发现。首先,切割起始并非在刀具边缘,而是发生在样品中心正下方的区域,该区域因侧向约束形成较高的应力集中,成为失稳扩展的起点。其次,与通常假设不同,切割过程中的切向阻力主要来源于材料与刀具间的黏附及磨损效应,而库仑摩擦的贡献因切割表面极低的接触压力而可忽略不计。这一定性结论通过参数敏感性分析得到验证——即使将摩擦系数设为零,模型仍能准确复现水凝胶与肉基材料的切割力曲线。再者,压入到切割的转变稳定性受能量耗散路径控制:若材料本身或界面耗散较弱(如明胶水凝胶),储存的弹性能会突然释放,导致切割力骤降;反之,若界面黏附显著或材料内部存在异质阻尼结构(如弹性体与肉基材料),则能量被逐步吸收,转变过程平滑稳定。最后,研究提出了一组关键无量纲参数,将材料刚度、断裂韧性、黏附强度与阻尼效应统一于同一框架中,实现了对不同软材料切割行为的系统表征与预测。

该研究通过实验观测与计算模拟的深度融合,建立了首个能够统一描述软材料切割中材料响应、界面力学与能量耗散耦合作用的物理框架。它不仅揭示了黏附(而非摩擦)在切向阻力中的主导作用,阐明了切割起始与扩展的几何约束效应,也为理解材料异质性对破坏过程的影响提供了新视角。这一成果为手术刀具的优化设计、食品质构的工程化调控、以及软材料在机器人抓持与加工中的性能评估提供了理论基础与方法工具,标志着软物质力学在破坏机理研究方面迈出了重要一步。

 

相关链接:

Moreno-Mateos M A, Steinmann P. Cutting soft materials: how material differences shape the response [J/OL]. npj Computational Materials. (2026-01-06)[2026-01-21]. https://www.nature.com/articles/s41524-025-01869-y.